MOLECULAR DOCKING OF SELECTED CD22 INHIBITORS TARGETING HUMAN CD22 RECEPTOR ON B CELLS

Authors

  • Hawzheen Aziz Muhammad Department of Microbiology, College of Medicine, University of Sulaimani, Kurdistan Region, Iraq.

DOI:

https://doi.org/10.17656/jsmc.10276

Keywords:

CD22 inhibitors, Cell Signalling, Docking, iGemdock software

Abstract

Background 

The CD22 is a B cell restricted receptor with a critical role in the maintenance of B cell inhibition to maintain humoral immunity homeostasis. The inhibitory function of CD22 and its specific expression on B cells makes it an attractive target for B cell depletion in autoimmune diseases and B cell derived malignancies. 

Objectives 

Determine the potential affinity for binding of fifteen commercially available CD22 inhibitors targeting CD22 protein was investigated using iGemdock software.

Methods

In the present study, the binding affinities of fifteen commercially available CD22 inhibitors have been investigated on CD22 protein using iGemdock software.

Results

The results showed that CD22 inhibitor, Thapsigargin produced greater affinity for the CD22 protein with the first rank. It binds with the CD22 protein with lowest interaction energy (fitness value) of -75.465 kcal/mol. 

Conclusion

The interaction confirms that the studied inhibitors interacted with CD22 protein by building hydrogen bonds with active site residues in addition to the hydrophobic interactions. Further in vitro studies are required to confirm these results.

References

Meyer SJ, Linder AT, Brandl C, Nitschke L. B Cell Siglecs-News on Signaling and Its Interplay With Ligand Binding. Frontiers in immunology. 2018;9:2820. PubMed PMID: 30559744. Pubmed Central PMCID: 6286995. DOI: https://doi.org/10.3389/fimmu.2018.02820

Jellusova J, Nitschke L. Regulation of B cell functions by the sialic acid-binding receptors siglec-G and CD22. Frontiers in immunology. 2011;2:96. PubMed PMID: 22566885. Pubmed Central PMCID: 3342095. DOI: https://doi.org/10.3389/fimmu.2011.00096

Ereno-Orbea J, Sicard T, Cui H, Mazhab-Jafari MT, Benlekbir S, Guarne A, et al. Molecular basis of human CD22 function and therapeutic targeting. Nature communications. 2017 Oct 2;8(1):764. PubMed PMID: 28970495. Pubmed Central PMCID: 5624926. DOI: https://doi.org/10.1038/s41467-017-00836-6

Shan D, Press OW. Constitutive endocytosis and degradation of CD22 by human B cells. Journal of immunology. 1995 May 1;154(9):4466-75. PubMed PMID: 7722303. DOI: https://doi.org/10.4049/jimmunol.154.9.4466

Gottenberg JE, Dorner T, Bootsma H, Devauchelle-Pensec V, Bowman SJ, Mariette X, et al. Efficacy of Epratuzumab, an Anti-CD22 Monoclonal IgG Antibody, in Systemic Lupus Erythematosus Patients With Associated Sjogren’s Syndrome: Post Hoc Analyses From the EMBODY Trials. Arthritis & rheumatology. 2018 May;70(5):763-73. PubMed PMID: 29381843. Pubmed Central PMCID: 5947119. DOI: https://doi.org/10.1002/art.40425

Clowse ME, Wallace DJ, Furie RA, Petri MA, Pike MC, Leszczynski P, et al. Efficacy and Safety of Epratuzumab in Moderately to Severely Active Systemic Lupus Erythematosus: Results From Two Phase III Randomized, Double-Blind, Placebo-Controlled Trials. Arthritis & rheumatology. 2017 Feb;69(2):362-75. PubMed PMID: 27598855. Pubmed Central PMCID: 5299488. DOI: https://doi.org/10.1002/art.39856

Kondo M, Tahara A, Hayashi K, Abe M, Inami H, Ishikawa T, et al. Renoprotective effects of novel interleukin-1 receptor-associated kinase 4 inhibitor AS2444697 through anti-inflammatory action in 5/6 nephrectomized rats. Naunyn-Schmiedeberg’s archives of pharmacology. 2014 Oct;387(10):909-19. PubMed PMID: 25052043. DOI: https://doi.org/10.1007/s00210-014-1023-z

Tang KM, Jang EK, Haslam RJ. Photoaffinity labelling of cyclic GMP-inhibited phosphodiesterase (PDE III) in human and rat platelets and rat tissues: effects of phosphodiesterase inhibitors. European journal of pharmacology. 1994 Jun 15;268(1):105-14. PubMed PMID: 7925608. DOI: https://doi.org/10.1016/0922-4106(94)90125-2

McInnes C, Mazumdar A, Mezna M, Meades C, Midgley C, Scaerou F, et al. Inhibitors of Polo-like kinase reveal roles in spindle-pole maintenance. Nature chemical biology. 2006 Nov;2(11):608-17. PubMed PMID: 17028581. DOI: https://doi.org/10.1038/nchembio825

Okamoto K, Eger BT, Nishino T, Kondo S, Pai EF, Nishino T. An extremely potent inhibitor of xanthine oxidoreductase. Crystal structure of the enzyme-inhibitor complex and mechanism of inhibition. The Journal of biological chemistry. 2003 Jan 17;278(3):1848-55. PubMed PMID: 12421831. DOI: https://doi.org/10.1074/jbc.M208307200

Sels JP, Huijberts MS, Wolffenbuttel BH. Miglitol, a new alpha-glucosidase inhibitor. Expert opinion on pharmacotherapy. 1999 Nov;1(1):149-56. PubMed PMID: 11249557. DOI: https://doi.org/10.1517/14656566.1.1.149

Wright BD, Loo L, Street SE, Ma A, Taylor-Blake B, Stashko MA, et al. The lipid kinase PIP5K1C regulates pain signaling and sensitization. Neuron. 2014 May 21;82(4):836-47. PubMed PMID: 24853942. Pubmed Central PMCID: 4074510. DOI: https://doi.org/10.1016/j.neuron.2014.04.006

Penning TD, Talley JJ, Bertenshaw SR, Carter JS, Collins PW, Docter S, et al. Synthesis and biological evaluation of the 1,5-diarylpyrazole class of cyclooxygenase-2 inhibitors: identification of 4-[5-(4-methylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benze nesulfonamide (SC-58635, celecoxib). Journal of medicinal chemistry. 1997 Apr 25;40(9):1347-65. PubMed PMID: 9135032. DOI: https://doi.org/10.1002/chin.199736141

Rai G, Joshi N, Perry S, Yasgar A, Schultz L, Jung JE, et al. Discovery of ML351, a Potent and Selective Inhibitor of Human 15-Lipoxygenase-1. Probe Reports from the NIH Molecular Libraries Program. Bethesda (MD)2010.

Cherwinski HM, Cohn RG, Cheung P, Webster DJ, Xu YZ, Caulfield JP, et al. The immunosuppressant leflunomide inhibits lymphocyte proliferation by inhibiting pyrimidine biosynthesis. The Journal of pharmacology and experimental therapeutics. 1995 Nov;275(2):1043-9. PubMed PMID: 7473131.

Mashiach-Farkash E, Rak R, Elad-Sfadia G, Haklai R, Carmeli S, Kloog Y, et al. Computer-based identification of a novel LIMK1/2 inhibitor that synergizes with salirasib to destabilize the actin cytoskeleton. Oncotarget. 2012 Jun;3(6):629-39. PubMed PMID: 22776759. Pubmed Central PMCID: 3442289. DOI: https://doi.org/10.18632/oncotarget.525

Cheng J, Li W, Kang B, Zhou Y, Song J, Dan S, et al. Tryptophan derivatives regulate the transcription of Oct4 in stem-like cancer cells. Nature communications. 2015 Jun 10;6:7209. PubMed PMID: 26059097. Pubmed Central PMCID: 4490363. DOI: https://doi.org/10.1038/ncomms8209

Lehmann GM, Xi X, Kulkarni AA, Olsen KC, Pollock SJ, Baglole CJ, et al. The aryl hydrocarbon receptor ligand ITE inhibits TGFbeta1-induced human myofibroblast differentiation. The American journal of pathology. 2011 Apr;178(4):1556-67. PubMed PMID: 21406171. Pubmed Central PMCID: 3078465. DOI: https://doi.org/10.1016/j.ajpath.2010.12.025

Song J, Clagett-Dame M, Peterson RE, Hahn ME, Westler WM, Sicinski RR, et al. A ligand for the aryl hydrocarbon receptor isolated from lung. Proceedings of the National Academy of Sciences of the United States of America. 2002 Nov 12;99(23):14694-9. PubMed PMID: 12409613. Pubmed Central PMCID: 137481. DOI: https://doi.org/10.1073/pnas.232562899

Wang K, Li Y, Jiang YZ, Dai CF, Patankar MS, Song JS, et al. An endogenous aryl hydrocarbon receptor ligand inhibits proliferation and migration of human ovarian cancer cells. Cancer letters. 2013 Oct 28;340(1):63-71. PubMed PMID: 23851185. Pubmed Central PMCID: 3781955. DOI: https://doi.org/10.1016/j.canlet.2013.06.026

Dwek RA, Butters TD, Platt FM, Zitzmann N. Targeting glycosylation as a therapeutic approach. Nature reviews Drug discovery. 2002 Jan;1(1):65-75. PubMed PMID: 12119611. DOI: https://doi.org/10.1038/nrd708

Platt FM, Neises GR, Dwek RA, Butters TD. N-butyldeoxynojirimycin is a novel inhibitor of glycolipid biosynthesis. The Journal of biological chemistry. 1994 Mar 18;269(11):8362-5. PubMed PMID: 8132559. DOI: https://doi.org/10.1016/S0021-9258(17)37202-2

Jiang JK, Ghoreschi K, Deflorian F, Chen Z, Perreira M, Pesu M, et al. Examining the chirality, conformation and selective kinase inhibition of 3-((3R,4R)-4-methyl-3-(methyl(7H-pyrrolo[2,3-d]pyrimidin-4-yl)amino)piperidin-1-y l)-3-oxopropanenitrile (CP-690,550). Journal of medicinal chemistry. 2008 Dec 25;51(24):8012-8. PubMed PMID: 19053756. Pubmed Central PMCID: 2660606. DOI: https://doi.org/10.1021/jm801142b

Lombardo LJ, Lee FY, Chen P, Norris D, Barrish JC, Behnia K, et al. Discovery of N-(2-chloro-6-methyl- phenyl)-2-(6-(4-(2-hydroxyethyl)- piperazin-1-yl)-2-methylpyrimidin-4- ylamino)thiazole-5-carboxamide (BMS-354825), a dual Src/Abl kinase inhibitor with potent antitumor activity in preclinical assays. Journal of medicinal chemistry. 2004 Dec 30;47(27):6658-61. PubMed PMID: 15615512.

Davidson GA, Varhol RJ. Kinetics of thapsigargin-Ca(2+)-ATPase (sarcoplasmic reticulum) interaction reveals a two-step binding mechanism and picomolar inhibition. The Journal of biological chemistry. 1995 May 19;270(20):11731-4. PubMed PMID: 7744817. DOI: https://doi.org/10.1074/jbc.270.20.11731

Yu M, Zhong L, Rishi AK, Khadeer M, Inesi G, Hussain A. Specific substitutions at amino acid 256 of the sarcoplasmic/endoplasmic reticulum Ca2+ transport ATPase mediate resistance to thapsigargin in thapsigargin-resistant hamster cells. The Journal of biological chemistry. 1998 Feb 6;273(6):3542-6. PubMed PMID: 9452480. DOI: https://doi.org/10.1074/jbc.273.6.3542

Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, et al. PubChem 2019 update: improved access to chemical data. Nucleic acids research. 2019 Jan 8;47(D1):D1102-D9. PubMed PMID: 30371825. Pubmed Central PMCID: 6324075. DOI: https://doi.org/10.1093/nar/gky1033

Systèmes D. Discovery Studio Modeling Environment. Dassault Systèmes BIOVIA. 4.1 ed. San Diego2016.

Hsu KC, Chen YF, Lin SR, Yang JM. iGEMDOCK: a graphical environment of enhancing GEMDOCK using pharmacological interactions and post-screening analysis. BMC bioinformatics. 2011 Feb 15;12 Suppl 1:S33. PubMed PMID: 21342564. Pubmed Central PMCID: 3044289. DOI: https://doi.org/10.1186/1471-2105-12-S1-S33

Chaudhary D, Robinson S, Romero DL. Recent advances in the discovery of small molecule inhibitors of interleukin-1 receptor-associated kinase 4 (IRAK4) as a therapeutic target for inflammation and oncology disorders. Journal of medicinal chemistry. 2015 Jan 8;58(1):96-110. PubMed PMID: 25479567. DOI: https://doi.org/10.1021/jm5016044

Freitag A, Wessler I, Racke K. Phosphodiesterase inhibitors suppress alpha2-adrenoceptor-mediated 5-hydroxytryptamine release from tracheae of newborn rabbits. European journal of pharmacology. 1998 Jul 31;354(1):67-71. PubMed PMID: 9726632. DOI: https://doi.org/10.1016/S0014-2999(98)00439-7

Taylor P, Blackburn E, Sheng YG, Harding S, Hsin KY, Kan D, et al. Ligand discovery and virtual screening using the program LIDAEUS. British journal of pharmacology. 2008 Mar;153 Suppl 1:S55-67. PubMed PMID: 18037921. Pubmed Central PMCID: 2268042. DOI: https://doi.org/10.1038/sj.bjp.0707532

Xu X, Hu X, Lu Z, Zhang P, Zhao L, Wessale JL, et al. Xanthine oxidase inhibition with febuxostat attenuates systolic overload-induced left ventricular hypertrophy and dysfunction in mice. Journal of cardiac failure. 2008 Nov;14(9):746-53. PubMed PMID: 18995179. Pubmed Central PMCID: 2610415. DOI: https://doi.org/10.1016/j.cardfail.2008.06.006

Aoki C, Suzuki K, Yanagi K, Satoh H, Niitani M, Aso Y. Miglitol, an anti-diabetic drug, inhibits oxidative stress-induced apoptosis and mitochondrial ROS over-production in endothelial cells by enhancement of AMP-activated protein kinase. Journal of pharmacological sciences. 2012;120(2):121-8. PubMed PMID: 23018899. DOI: https://doi.org/10.1254/jphs.12108FP

Harris RE, Alshafie GA, Abou-Issa H, Seibert K. Chemoprevention of breast cancer in rats by celecoxib, a cyclooxygenase 2 inhibitor. Cancer research. 2000 Apr 15;60(8):2101-3. PubMed PMID: 10786667.

Brazelton TR, Morris RE. Molecular mechanisms of action of new xenobiotic immunosuppressive drugs: tacrolimus (FK506), sirolimus (rapamycin), mycophenolate mofetil and leflunomide. Current opinion in immunology. 1996 Oct;8(5):710-20. PubMed PMID: 8902398. DOI: https://doi.org/10.1016/S0952-7915(96)80090-2

Rak R, Haklai R, Elad-Tzfadia G, Wolfson HJ, Carmeli S, Kloog Y. Novel LIMK2 Inhibitor Blocks Panc-1 Tumor Growth in a mouse xenograft model. Oncoscience. 2014;1(1):39-48. PubMed PMID: 25593987. Pubmed Central PMCID: 4295757. DOI: https://doi.org/10.18632/oncoscience.7

Noel S, Wilke M, Bot AG, De Jonge HR, Becq F. Parallel improvement of sodium and chloride transport defects by miglustat (n-butyldeoxynojyrimicin) in cystic fibrosis epithelial cells. The Journal of pharmacology and experimental therapeutics. 2008 Jun;325(3):1016-23. PubMed PMID: 18309088. DOI: https://doi.org/10.1124/jpet.107.135582

Dowty ME, Jesson MI, Ghosh S, Lee J, Meyer DM, Krishnaswami S, et al. Preclinical to clinical translation of tofacitinib, a Janus kinase inhibitor, in rheumatoid arthritis. The Journal of pharmacology and experimental therapeutics. 2014 Jan;348(1):165-73. PubMed PMID: 24218541. DOI: https://doi.org/10.1124/jpet.113.209304

Das J, Chen P, Norris D, Padmanabha R, Lin J, Moquin RV, et al. 2-aminothiazole as a novel kinase inhibitor template. Structure-activity relationship studies toward the discovery of N-(2-chloro-6-methylphenyl)-2-[[6-[4-(2-hydroxyethyl)-1- piperazinyl)]-2-methyl-4-pyrimidinyl]amino)]-1,3-thiazole-5-carboxamide (dasatinib, BMS-354825) as a potent pan-Src kinase inhibitor. Journal of medicinal chemistry. 2006 Nov 16;49(23):6819-32. PubMed PMID: 17154512.

Ding WX, Ni HM, Gao W, Hou YF, Melan MA, Chen X, et al. Differential effects of endoplasmic reticulum stress-induced autophagy on cell survival. The Journal of biological chemistry. 2007 Feb 16;282(7):4702-10. PubMed PMID: 17135238. DOI: https://doi.org/10.1074/jbc.M609267200

Kreitman RJ, Dearden C, Zinzani PL, Delgado J, Karlin L, Robak T, et al. Moxetumomab pasudotox in relapsed/refractory hairy cell leukemia. Leukemia. 2018 Aug;32(8):1768-77. PubMed PMID: 30030507. Pubmed Central PMCID: 6087717.

Wayne AS, Shah NN, Bhojwani D, Silverman LB, Whitlock JA, Stetler-Stevenson M, et al. Phase 1 study of the anti-CD22 immunotoxin moxetumomab pasudotox for childhood acute lymphoblastic leukemia. Blood. 2017 Oct 5;130(14):1620-7. PubMed PMID: 28983018. Pubmed Central PMCID: 5630009. DOI: https://doi.org/10.1182/blood-2017-02-749101

Doan NT, Paulsen ES, Sehgal P, Moller JV, Nissen P, Denmeade SR, et al. Targeting thapsigargin towards tumors. Steroids. 2015 May;97:2-7. PubMed PMID: 25065587. Pubmed Central PMCID: 4696022. DOI: https://doi.org/10.1016/j.steroids.2014.07.009

Wang H, Jia XZ, Sui CJ, Zhao YP, Mei YF, Zheng YN, et al. Effects of thapsigargin on the proliferation and survival of human rheumatoid arthritis synovial cells. TheScientificWorldJournal. 2014;2014:605416. PubMed PMID: 24688409. Pubmed Central PMCID: 3934453. DOI: https://doi.org/10.1155/2014/605416

Ma Z, Fan C, Yang Y, Di S, Hu W, Li T, et al. Thapsigargin sensitizes human esophageal cancer to TRAIL-induced apoptosis via AMPK activation. Scientific reports. 2016 Oct 12;6:35196. PubMed PMID: 27731378. Pubmed Central PMCID: 5059685. DOI: https://doi.org/10.1038/srep35196

Kondo M, Tahara A, Hayashi K, Inami H, Ishikawa T, Tomura Y. Therapeutic effects of interleukin-1 receptor-associated kinase 4 inhibitor AS2444697 on diabetic nephropathy in type 2 diabetic mice. Naunyn-Schmiedeberg’s archives of pharmacology. 2020 Jan 23. PubMed PMID: 31974740. DOI: https://doi.org/10.1007/s00210-020-01816-2

McCaig AM, Cosimo E, Leach MT, Michie AM. Dasatinib inhibits B cell receptor signalling in chronic lymphocytic leukaemia but novel combination approaches are required to overcome additional pro-survival microenvironmental signals. British journal of haematology. 2011 Apr;153(2):199-211. PubMed PMID: 21352196. DOI: https://doi.org/10.1111/j.1365-2141.2010.08507.x

Mustjoki S, Auvinen K, Kreutzman A, Rousselot P, Hernesniemi S, Melo T, et al. Rapid mobilization of cytotoxic lymphocytes induced by dasatinib therapy. Leukemia. 2013 Apr;27(4):914-24. PubMed PMID: 23192016. DOI: https://doi.org/10.1038/leu.2012.348

Oksvold MP, Duyvestyn JM, Dagger SA, Taylor SJ, Forfang L, Myklebust JH, et al. The targeting of human and mouse B lymphocytes by dasatinib. Experimental hematology. 2015 May;43(5):352-63 e4. PubMed PMID: 25641047. DOI: https://doi.org/10.1016/j.exphem.2015.01.008

Published

2020-12-21

How to Cite

1.
Muhammad H. MOLECULAR DOCKING OF SELECTED CD22 INHIBITORS TARGETING HUMAN CD22 RECEPTOR ON B CELLS. JSMC [Internet]. 2020 Dec. 21 [cited 2024 Jul. 3];10(3):355-69. Available from: https://jsmc.univsul.edu.iq/index.php/jsmc/article/view/jsmc-10276

Similar Articles

1-10 of 30

You may also start an advanced similarity search for this article.